

END OF FIRST SEMESTER EXAMINATION: 2017/2018

FACULTY OF ARTS AND SOCIAL SCIENCES

DEPARTMENT OF ECONOMICS

ECON 301 (3 CREDITS)

INTERMEDIATE MICROECONOMICS

LEVEL 300

JANUARY, 2018

DURATION: 2 HOURS

STUDENT ID No.....

INSTRUCTIONS

ANSWER ANY THREE (3) QUESTIONS

DO NOT TURN OVER THIS PAGE UNTIL YOU HAVE BEEN TOLD TO DO SO BY
THE INVIGILATOR

LECTURER: GEORGE HUGHES

CENTRAL UNIVERSITY

DEPARTMENT OF ECONOMICS

ECON 301: INTERMEDIATE MICROECONOMICS END OF FIRST SEMSTER EXAMINATION

Time: 2 hours

Instruction: Answer any three questions

Q1.

 a. Differentiate between income consumption curve and price consumption curve.

[4marks]

b. Derive the income compensated demand function for an individual whose utility function is U = xy and budget constraint equation is

 $XP_x + YP_y = M ag{8marks}$

- c. Determine the degree of homogeneity of the demand function and interpret your result. [6marks]
- d. Outline the characteristics of indifference curve. [2marks]

Q2.

 Express mathematically the condition for consumer optimum given by the ordinal approach.

[4marks]

- b. From (a) or otherwise obtain the consumer's optimum consumption basket given U = xy, $P_x = GHc 2$, $P_y = GHc 10$, and money income = GHc 400 [12marks]
- c. If a cardinal measure of utility exists obtain the total utility for the consumer at the optimum. [4marks]

Q3.

- a. Distinguish between a production function and an isoquant. [6marks]
- b. The Cobb-Doughlas production function $Q = AL^{\alpha}K^{\beta}$ is the most widely used production function in empirical work. If A, α and β are positive parameters determined in each case by the data on L and K.
 - i. Indicate the economic meaning of the parameters. [3marks]

- ii. What does the following expressions of α and β say about the returns to scale of the production function? [3marks] $\alpha + \beta = 1$; $\alpha + \beta < 1$ and $\alpha + \beta > 1$
- iii. Determine the marginal products of the inputs. [4marks]
- iv. Explain and find an expression for the marginal rate of technical substitution for L and K $(MRTS_{LK})$ [4marks]

Q4.

- a. A firm faces the general production function of Q = f(L, K) and given cost outlay $C^* = wL + rK$, where w is the usage of labour and r is the rental price for capital. Determine by calculus the optimum condition for output maximization. [6marks]
- b. Given the production function $Q=100L^{0.5}K^{0.5}$ subject to the total outlay $C^*=wL+rK$, w=GHC 30 and r=GHC 40, $C^*=GHC$ 1000, obtain
 - i. The values of L and K that will maximize output. [10marks]
 - ii. The total output [4marks]

Q5.

- a. Derive with the aid of calculus the first-and-second-order conditions for output that a perfectly competitive firm must produce in order to maximize total profits.
- b. A perfectly competitive firm faces prices equal to GHC 4 and total cost $(TC)=Q^3+7Q^2+12Q+5$,
 - Determine the best level of output of the firm by the marginal approach. [11marks]
 - ii. Calculate the profit [3marks]